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Abstract. This study combines the seminal ideas of Tiebout (1956) and Grossman (1972) to
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location based on their heterogeneous preferences for local public goods and their beliefs about
how their location choices will affect the future evolution of their health. Thus, the choice of
residential location constitutes a health investment, in addition to providing current and future
consumption values of local public goods. To estimate the dynamic model of location choice, I
employ a sample of 4.5 million seniors from 2001-2013. Seniors’ preferences for public goods,
private goods, and their rates of intertemporal substitution between health and consumption
are allowed to vary flexibly with age and health. Results suggest that seniors’ willingness-to-
pay (WTP) for warmer winters is uniformly positive, while WTP to avoid warmer summers
varies with age and health. Their average annual WTP to avoid future climate change in the
U.S. predicted under a “business as usual” scenario for global carbon emissions ranges from
$1,431 for older, sicker groups who are more vulnerable to climate change’s negative effects on
health to -$3,813 for younger, healthier groups, who value warmer winters and are relatively
resilient and mobile.
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1. Introduction

Many policies that target environmental quality or issues of public health have spatially

heterogeneous effects on urban populations. For example, federally subsidized health insur-

ance plans are often sold in distinct state or regional markets, the EPA’s Cross-State Air Pollu-

tion Rule obligates some states to reduce the pollution they export to other states, and national

ambient air quality standards are only enforced in counties where pollution exceeds a given

threshold.1 Thus, federal policies affect people’s health and pollution exposures differently

depending on where they choose to live. The costs and benefits of these policies depend on

how they change local environments, on how those changes affect people’s health, and on how

people react to these changes. People may react by moving, due to their preferences for local

amenities or due to the effects of local amenities on their health, or both. Indeed, one in four se-

niors report “Health Reasons” as one of the reasons for their most recent move, placing “Health

Reasons” among the top responses in the Health and Retirement Survey 2008. Deciding where

to live can be highly consequential for health. The quality of local health care, environmental

amenities such as climate and air pollution, and opportunities for social interaction, can all

affect seniors’ health and longevity.

This paper integrates the seminal ideas of Tiebout (1956) and Grossman (1972) into a new

residential sorting model that allows individuals’ preferences for residential location amenities

may depend, in part, on their health, and that they recognize that the locations they choose

may affect their health in the future. Thus, residential location decisions can serve as a costly

and conscious form of investment in future health. Recent work has shown that life expectancy
1Similarly, subsidizing the electric vehicle fleet may reduce air pollution and improve human health in areas

where the energy used to power cars is predominantly generated from renewable sources, but increase pollu-
tion in areas where the electricity is generated by fossil fuel plants (Holland et al., 2016).
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varies substantially across space in the US (Chetty et al., 2016), and that the location of residence

has a causal impact on life expectancy (Deryugina and Molitor, 2020; Finkelstein et al., 2021).

I incorporate these insights by making longevity and health endogeneous to location and by

considering how changes in environmental quality affect welfare through amenity flows, the

health stock, and longevity. I use the model to investigate the distributional welfare conse-

quences of climate change projections for the United States, taking into account the effects on

both residential amenity values and human health, while recognizing that migration can serve

as a mitigation strategy.

My application focuses on senior citizens (people over age 65). Seniors are an especially

important demographic group when it comes to health and environmental quality because

they are known to be more vulnerable to extreme climates and pollution than younger adults

in terms of morbidity and mortality, making them the primary beneficiaries of public policies

targeting pollution, in addition to being the primary beneficiaries of Medicare programs. Fur-

thermore, seniors are the wealthiest and fastest growing age group in the United States and

many other countries, projected to account for one in five US residents by 2030. I study the co-

evolution of seniors’ health and residential location choices by leveraging rich panel data from

the U.S. Centers for Medicare and Medicaid Services (CMS). These data allow me to precisely

track the residential location decisions of 4.5 million seniors, their diagnoses of chronic medical

conditions, and their deaths from 2001 through 2013.

I model their behavior by developing a dynamic discrete choice model in the spirit of Bayer

et al. (2016). It incorporates health and age as sources of individual preference heterogeneity

and introduces uncertainty about future health status. When individuals choose where to live,

they are assumed to know how their location choices will affect their mortality risk and their
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probabilities of transitioning to various future health states. More precisely, an individual is

characterized by age, health, and an individual random utility shock, and chooses a residential

location in order to maximize total lifetime utility. The unit of choice modelled here is a Hos-

pital Referral Region (HRR) of which there are 306 in the US. Total lifetime utility is the sum of

discounted per-period utilities over the remaining years of life. The choice of a residential lo-

cation determines the levels of amenities that the resident gets to enjoy. Per-period utility from

each place is a function of local amenities and prices and differs by health and age type. Future

health is a function of both current health and current location. Thus, the model incorporates

both static and dynamic tradeoffs between the quantity and quality of life. For example, places

that are characterized by pleasant climate and high levels of cultural amenities, but also high

levels of air pollution, might yield a high per-period utility, but affect future health negatively

and hence shorten the remaining life span. Notice that the utility cost of moving is modelled as

a flexible function of both distance and current health and age type, therefore the effect of age

on the propensity to move is well captured.

The estimation proceeds in three stages. First, I estimate the causal place-specific mortal-

ity risk following the selection correction regression procedure developed by Finkelstein et al.

(2021). Next, I estimate the causal place-specific effects on the probabilities of transitioning to

worse states of health using an ordered logit approach that leverages the panel data to mitigate

potential biases from sorting on latent health. Finally, I estimate preference parameters using

a version of Bayer et al.’s (2016) dynamic discrete choice estimator. The estimated structural

parameters permit a novel, highly flexible approach to prospective policy analysis. Policies

that change the provision of local amenities heterogeneously across space can be evaluated

in terms of their effect on health, longevity, and welfare, while accounting for migration and
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health dynamics.

I first use the model to estimate seniors’ preferences for local amenities, for avoiding mi-

gration, and for reducing their morbidity and mortality risk, allowing preferences to vary flex-

ibly across several age-health types. I find that seniors’ preferences vary substantially across

age and states of health. For example, I find that the willingness to pay (WTP) for warmer

winters as a local amenity is uniformly positive, (ranging from $62 to $170 per year for a 1C

increase across types) whereas the WTP to pay for cooler summers varies substantially by age

and health and is largest among the oldest, sickest individuals ($151 per year for a 1C decrease).

Precipitation appears to be a significant disamenity, with an especially high WTP to avoid wet-

ter climates among sicker and older individuals (up to $438 per year for a 1mm decrease in

daily precipitation.2). I also find that seniors are willing to pay more for better air quality, and

for access to social amenities, as measured by variables containing the log number of apparel

stores, dining places, golf courses, and movie theaters.

I combine these estimates with the estimated effects of climate change on morbidity and

mortality to evaluate the distributional welfare implications of the changes in average summer

and winter temperatures and precipitation that are projected to occur under the World Climate

Research Program’s “business as usual” scenario for global carbon emissions through 2100.

These changes affect utility flows from climate amenities as well as the present discounted

value of changes in longevity and health caused by the way that additional warming is pre-

dicted to negatively affect both mortality and morbidity. Ex ante, the net welfare effects are

ambiguous because individuals value warmer winters and can pay to migrate to areas with rel-

atively less warming, both of which can help to offset welfare losses from shortened lifespans.

21mm per day translates to 14.4in per year
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Indeed, I find that the welfare implications of climate change are very heterogeneous in age and

health. Younger and healthier types are in fact made better off because they value warmer win-

ters and even warmer summers, to an extent that offsets the adverse health effects of climate

change. The welfare gain in the above climate change scenario for the youngest and healthiest

type amounts to $1,357 annually. Older and sicker types suffer from warmer summers and

also from increases in precipitation levels. The oldest and sickest type would realize a welfare

loss equivalent to $739 annually in the climate change scenario compared to the baseline of no

climate change. Comparing different geographic locations, the locations that are predicted to

have warmer winters but only moderately warmer summers stand to gain the most from the

climate change scenario considered here. These results are relevant for policy-makers due to

potential implications for the voting behavior of seniors and soon-to-be seniors.

My study builds on prior literatures on Tiebout sorting and spatial variation in morbidity

and mortality. The Tiebout sorting literature has previously analyzed the equilibrium impli-

cations of sorting on heterogeneous preferences and income (e.g. Epple and Platt (1998)) and

developed static random utility representations of individual choice to estimate preferences for

local amenities such as air pollution and school quality (e.g. Bayer et al. (2007) and Bayer et al.

(2009)). Albouy et al. (2016) and Sinha et al. (2018b) used sorting models to analyze the welfare

effects of climate change, but did so in a static environment that abstracted from the health

impacts of climate change. Bayer et al. (2016) developed a dynamic discrete choice framework

for modeling residential location decisions made by forward-looking agents. I extend their ap-

proach to treat health as an endogenous state variable that simultaneously reflects the amenity

exposures determined by past location decisions and affects future amenity exposures via cur-

rent location decisions. This two-way interaction allows me to connect the Tiebout sorting
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literature to a separate literature that has sought to explain how residential amenity exposures

affect health without modeling the past location decisions that led to those exposures or the

effects of those exposures on future location decisions. For example, Barreca et al. (2015) esti-

mated the mortality effects of heat; Chetty et al. (2016) documented dramatic spatial variation

in longevity across the U.S.; and Finkelstein et al. (2021) and Deryugina and Molitor (2020) used

quasi-experimental research designs to establish that some of the spatial variation in mortality

is in fact caused by the locations where individuals chose to live.

The rest of the paper is organized as follows. Section 2 summarizes related literature,

Section 3 outlines the model, Section 4 describes the data, Section 5 explains the estimation

strategy, Section 6 reports results, Section 7 quantifies welfare effects under climate change,

and Section 8 concludes.

2. Related Literature

This paper integrates the seminal ideas of Tiebout (1956) and Grossman (1972) by building

a conceptual framework that recognizes that individuals may sort themselves across residential

neighborhoods based on their heterogeneous preferences for local public goods, while recog-

nizing that their choice of a residential location also constitutes an investment into their future

health, because the quality of local health care and the natural environment may affect the evo-

lution of their health stock. My framework builds on prior literature on residential sorting and

prior literature on how variation in the local health care and local environmental quality affect

health capital.
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2.1. Residential Sorting

Residential sorting models aim to understand how heterogeneity in individual preferences

and incomes induces people to sort themselves across differentiated neighborhoods; what

those individual location decisions reveal about households’ preferences for neighborhood

amenities; and how those decisions translate into aggregate differences across communities.3.

Examples of non-market amenities that have been studied with the help of sorting models in-

clude school quality (Bayer et al., 2007), air quality (Bayer et al., 2009), and climate (Sinha et al.,

2018b). The dimensions of individual heterogeneity that are typically used to explain differ-

ences in location decisions are income, wealth, presence of children, and an all-encompassing

”taste” parameter. I extend this literature to consider age and health as potential sources of

individual heterogeneity that may be important for explaining how people make tradeoffs be-

tween consumption of public and private goods when they choose residential locations late in

life.

Seniors tend to move less frequently than younger adults. With this in mind, an important

feature of empirical sorting models is the ability to incorporate the disutility of moving associ-

ated with the physical, financial, and psychic costs of changing residential locations.4. Moving

cost are typically modelled as a function of previous location of residence and can be interacted

with individual characteristics (Hamilton and Phaneuf, 2015; Sinha et al., 2018b).

Another important feature of residential sorting models is the ability to predict how changes

in amenities, such as the local climate, will change residential sorting patterns, and how these

changes will feed back into welfare measures used to evaluate public policies (e.g. Sieg et al.

3A comprehensive review can be found in Kuminoff et al. (2013)
4Abstracting from the cost of moving leads to considerably lower estimates for the valuation of amenities (Bayer

et al., 2009; Sinha et al., 2018a)
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(2004); Galiani et al. (2015); Sinha et al. (2018b). However, most empirical studies have used

static models. Bayer et al. (2016) advanced the sorting literature by developing a tractable

framework for modeling dynamic decision-making by forward-looking agents who have be-

liefs about how neighborhoods will evolve in the future. Individuals in their model form ex-

pectations about future changes in amenities and factor these into their current location de-

cisions. Allowing for this behavior can substantially change estimates for the willingness to

pay for amenities relative to a traditional static model. Bayer et al. (2016) abstract from the

potential role of health, but they model wealth as a dynamic state variable that is affected by

individuals’ moving decisions. In contrast, I abstract from wealth in order to model health as

a dynamic state variable that may simultaneously affect location decisions and be affected by

location decisions. There are two main reasons for doing so. First, health and wealth are corre-

lated (Chetty et al., 2016), so modelling different health types will partly capture differences in

preferences that arise from differences in wealth. Secondly, the unit of choice in this paper is a

relatively aggregated spatial unit, comparable to a city. Sorting on wealth plays an important

role for sorting within a city (Epple and Sieg, 1999), but less so for large-scale spatial sorting

across cities. Sorting on climate for example might be motivated by health concerns, and there

is little climatic variation within a city.

A few more recent studies have used sorting models to estimate the welfare effects of

climate change. Albouy et al. (2016) use a hedonic equilibrium framework to estimate the

value of changes in climate amenities, Sinha et al. (2018b) use a discrete choice model, and

Sinha et al. (2018a) compare both approaches. All three studies calculate the willingness to pay

to avoid sudden climate change that would match the changes predicted to occur in the United

States by the middle or end of the century. The predicted welfare changes are found to be
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equivalent to an annual loss of 1 to 4 percent of income. However, these studies abstract from

the effects of climate change on mortality and morbidity, and instead focus exclusively on the

consumption amenity value of climate, (i.e. utility flows from living in areas with particular

climates). All three studies also use static models that abstract from forward looking behavior.

Relative to these studies, my framework adds the health effects of climate change on morbidity

and mortality and adds dynamic decision-making based on forward looking behavior with

respect to the effects of climate change on health and amenity value.

2.2. Health Effects of Residential Choice

There is a large literature showing how local environmental quality affects morbidity and

mortality. Exposure to ambient air pollution has been found to increase infant mortality (Chay

and Greenstone, 2003; Currie et al., 2015; Currie and Walker, 2015), adult mortality (Pope III

et al., 2002; Deryugina et al., 2019), morbidity (Schlenker and Walker, 2015; Bishop et al., 2018)

and labor productivity during early adulthood (Isen et al., 2017). Heat has also been shown to

increase mortality (Barreca et al., 2015; Burgess et al., 2014; McMichael et al., 2008).

My research is most closely related to a set of recent studies that estimate how residential

location choices affect human mortality without focusing on any particular amenity (Chetty

et al., 2016; Deryugina and Molitor, 2020). Finkelstein et al. (2021) compare individuals who

moved into the same place from different origins, accounting for aggregate spatial differences

in health, and find that the choice of a residential location can increase or decrease life ex-

pectancy by more than a year. While there is revealed preference evidence on how locally

determined environmental factors affect mortality and morbidity, and there is evidence that
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these factors are of concern to individuals since changes in amenities are often found to be cap-

italized into housing prices (Chay and Greenstone, 2005), this study is the first to investigate

how individual location decisions are influenced by concerns about how those decisions feed

back into health.

2.3. Connecting the Residential Sorting and Health Effects Literatures

I connect the residential sorting and health effects literatures by focusing on two distinct

channels through which local amenities may affect individual utility apart from their effects

on housing prices. First, like the residential sorting literature, I recognize that individuals may

value the current and expected future consumption flows derived from local amenities. Sec-

ond, like the health effects literature, I recognize that local amenities may affect future mortal-

ity and morbidity. Thus, forward looking individuals face a multi-dimensional intertemporal

tradeoff between the quantity and quality of life. They can reduce their consumption of private

goods by paying to move to more expensive neighborhoods that provide higher consumption

value of amenities (i.e. Tiebout sorting). They can also reduce their consumption of private

goods by paying to move to neighborhoods that increase their chances of survival and of re-

maining healthy in old age (Grossman sorting). The choices that households make when faced

with these dual tradeoffs will reveal features of their preferences that are relevant for evaluat-

ing the welfare effects of future climate change, and for evaluating a wide range of prospective

polices targeting human health and environmental quality.
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3. Model

I develop a dynamic discrete choice model of residential sorting after retirement that ex-

tends Bayer et al. (2016). Health and age are treated as sources of individual heterogeneity that

affect decision-making. Age evolves deterministically conditional on survival, but survival

and the health stock evolve as stochastic functions of location-specific amenities. More pre-

cisely, the probability of survival and the probability distribution over future states of health

are each modelled as location-specific functions of observed amenities such as climate, local

health care quality, crime, and air pollution.

The spatial landscape is divided into a finite number of residential locations. Locations dif-

fer in amenities, prices, and their effects on individuals’ survival probabilities and probabilities

of transitioning to different health states. Individuals are assumed to have knowledge about

all of these attributes and to have perfect foresight over the future evolution of attribute levels.

Notice that this implies that individuals in the model period 2001-2006 anticipated perfectly

both amenity levels and rent levels in the model period 2007-2013. This allows individuals to

decide on a residential location based on both quality and quantity of the expected remaining

life span, and to trade off one for the other. Individuals are assumed to purchase continuous

quantities of housing in their preferred locations at constant location-specific prices that reflect

the implicit cost of consuming the bundle of location-specific amenities. Income is assumed to

be derived from fixed sources such as social security and pensions since individuals are retired.

Hence, income is invariant to location.

Individuals are characterized by type τ = (age, health) and the set of types is assumed to

be discrete and finite in each dimension. The state space of each individual therefore is their
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type and their current location at the beginning of a model period. Locations are characterized

by levels of prices and amenities. The current flow utility uj from living in place j is a weighted

sum of amenities Xj, the price level pj that needs to be paid to live in j, and place-and-type-

specific utility ξτ
j that captures all between-type heterogeneity in utility from location-specific

amenities that are observed by individuals but not by the analyst.

uτ
j,t = Xj,tβ

τ + pj,tα
τ + ξτ

j (1)

The marginal utility parameters βτ and ατ vary with type τ. Thus, individuals of different age

and health types may have systematically different preferences over amenities and consump-

tion. Further, flow utility may vary over time, with changes in amenity levels and prices.

Individuals survive to the next period with probability sτ
j . This probability depends on

type τ and location j. Specifically, survival at each location is modeled as a Gompit function of

age, a type-specific fixed effect, and a location-specific fixed effect.5

One model period spans six years, therefore the annual probability of survival has to be

multiplied across six years.

sτ
j =

6

∏
t=1

exp
(
− exp(ϕ aget + γj + hτ)

)
(2)

γj is the place effect on survival. A higher γj decreases the probability of survival. hτ sum-

marizes the health capital of type τ which is assumed to be observed in the data and will be

5The Gompertz mortality function (Gompertz, 1825) has been used for 200 years to describe human mortality
as a function of age. Recently, it has also been used to model spatial variation in human mortality (Chetty
et al., 2016; Finkelstein et al., 2021). Here I use a variation dubbed the Gompit mortality function mj(a) =
1− exp(− exp(ϕa + γj + hτ)) which offers the benefit of being bounded by 0 and 1.

13



defined in detail in Section 5.

Conditional on survival, individuals transition deterministically to the next age type, and

stochastically to a different health type. The probability of transitioning to a different type of

health τ′ is assumed to be a function of current age and health type τ, and current location effect

γtr,τ
j . Therefore, the health transition probabilities depend on both current type and location.

The function f is an ordered probit specification and has been chosen to provide a mapping

from age and location effects to health transition probabilities.

Pj(τ, τ′) = f (ϕtr,τ ageτ + γtr,τ
j ) (3)

If an individual reoptimizes their location decision, they will have to pay moving cost MC.

Moving costs vary by origin-destination pair and, conditional on origin-destination, are al-

lowed to vary across types τ. Moving costs capture the full utility cost of moving, and therefore

may contain physical cost of moving, financial cost of moving (e.g. realtor fees, closing costs,

housing search costs, cost of finding new doctors), and the psychological cost of moving away

from family and friends.

The lifetime utility V provided by place j to an individual of type τ is the discounted

expected sum of flow utilities. The individual random utility shock is assumed to be an i.i.d.

draw from a Type I EV distribution. Moving cost will be modelled with a flexible function of
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distance in kilometers.

Vτ
i,j,t = uτ

j,t︸︷︷︸
flow utility

+ β sτ
j ∑

τ′
Pj(τ, τ′) E

(
max

k
Vτ′

k,t+1 −MCτ′(k, j) + εi,k,t+1

)
︸ ︷︷ ︸

discounted future utility, conditional on survival sτ
j

+ β (1− sτ
j ) θ︸ ︷︷ ︸

value of death

(4)

The decision problem of a individual of type τ, initially located in l, is to maximize individual

lifetime utility Vτ
i,j,t. Vτ

i,j,t is the sum of type-place specific lifetime utility Vτ
j,t and an individual

random utility shock εijt, less moving cost MC that has to be paid in case the optimal location

j is not equal to initial location l. Notice that MC(j, j) = 0 for all j.

max
j

Vτ
i,j,t(l) = Vτ

j,t − MCτ
t (j, l)︸ ︷︷ ︸

moving cost

+ εijt︸︷︷︸
individual random utility

(5)

Figure 1 depicts the events that occur within each model period as a sequence. The individual

state variables are current type τ = (age, health) and initial location l. Period t starts with

the realization of random utility εijt, and the initial type τ and location j. Each individual

observes their options in terms of available locations, net of moving cost relative to the initial

location. They decide on the optimal location j based on the maximization problem in Equation

5 and, if they relocate, pay the moving cost that depends on the distance of the move and

the current type. Then, based on the chosen location and initial type, survival or death is

realized. Conditional on survival, the individual transitions to a different health type, where

the distribution over new health types also depends on chosen location and current type. Then

the next period starts. In period t + 1, the individual will start in the currently optimal location

j. Future utility is uncertain (1) due to uncertainty about survival, (2) due to uncertainty about
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the future health type, and (3) due to uncertainty about future random utility shock εij,t+1.

In summary, the model combines the ideas of Tiebout and Grossman by (1) modelling that

individuals choose the locations that provides the highest utility to them, and (2) letting their

residential location choices constitute health investment decisions, captured by the way that

type-specific survival probabilities and type-specific probabilites of transitioning to different

states of health vary across locations. If the dynamic channel were eliminated, there would be

no concerns about future health and mortality, and the model would solely capture the current

consumption value of amenities, similar to Bayer et al. (2007, 2009); Sinha et al. (2018b).

An important source of individual heterogeneity in the sorting literature has been income

(Epple and Platt, 1998; Epple and Sieg, 1999; Bayer et al., 2004; Calabrese et al., 2006). While I

do not observe income in the data, I observe eligibility for Medicaid. Medicaid eligibility is a

noisy proxy for income, especially since it can causally covary with age, as people spend down

their assets and become eligible for Medicaid over time. This implies that the composition of

Medicaid-eligible individuals can look very different at age 65 compared to age 75 or 85. More

importantly, studies that highlight the role of income for sorting typically focus on a city or a

metro area, within which residents sort by income. In this study, the choice set is - roughly - a

collection of cities, and across cities, sorting on income is arguably less important than within

cities. In addition to that, this study uses health as a source of individual heterogeneity, and

health has been shown to be systematically related to income (Chetty et al., 2016). Therefore,

some of the variation captured by different types of health reflects differences in preferences by

income.

A further issue to point out is that in the data, I am not able to observe neither the marital

status of individuals nor the locations of family members, e.g. adult children. While locations
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t t + 1

1. Realize initial
type, location, ε

2. Observe
options

3. Decide on
location

4. Survive
or die

5. Transition
health type

Figure 1: TIMELINE OF EVENTS WITHIN ONE MODEL PERIOD

of adult children certainly play an important role in location decisions of the elderly, the follow-

ing considerations might alleviate the reader’s concern. Firstly, some of the variation stemming

from locations of adult children will be captured by the individual random utility. As long as

not all seniors in one specific location have all of their children in one different specific location,

the individual random utility will account for a large part of this. Second, whenever seniors

have more than one adult child living in separate locations, they still have more than one op-

tion to choose from if they wish to live close to them and at this point, considerations about

local amenities and price levels will enter the decision. Finally, the pairwise regional dummies

in the moving cost function account for popular migration channels, for example seniors from

the Northeast tend to move to the South and seniors from the Midwest tend to move to the

West. This will further clean up some of the variation that is induced by adult children’s lo-

cation because it will make it cheaper to return to the region of origin, where adult children

might potentially have stayed, in the subsequent model period.

4. Data

Information on individual location, age, and health comes from confidential administra-

tive records from the U.S. Centers for Medicare and Medicaid services (CMS). The data are a 10
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percent random sample of seniors who were enrolled in traditional Medicare in 1999-2013 (i.e.

Medicare Parts A and B)6. Traditional Medicare is universal health care coverage for all U.S.

citizens over the age of 65. For each individual, I observe annual data on residential location,

health, and demographics from 1999 to 2013, or until they die. Individuals exit the data when

they die. Their residential locations are observed as a ZIP+4 code, which is a mail delivery

point such as a unique address, one floor of an apartment building, or one side of a street on a

city block.7 Additionally, I observe annual data on the presence or absence of over forty com-

mon chronic medical conditions from CMS’s chronic condition warehouse file. I focus on the

twenty-seven conditions used in Finkelstein et al. (2021). Table 1 lists these conditions ranked

by incidence in 2001, which is the start of the designated first model period 2001-2006. The

most common condition by far is hypertension, which afflicts over 40 percent of individuals.

Over 30 percent are diagnosed with ischemic heart disease.

4.1. Health Capital

I quantify individual health capital using a version of the frailty index. The frailty index

measures health capital as the accumulated sum of adverse health events. I define an adverse

health event as the diagnosis of a chronic condition. Individuals are then grouped into quar-

tiles, based on their number of chronic conditions. The resulting mapping from the number of

diagnosed conditions to health type quartile is reported in Table 2.

The frailty index has been shown to predict mortality and institutionalization better than

age (Mitnitski et al., 2005; Goggins et al., 2005). Hosseini et al. (2021) show that the frailty

6Individuals who are enrolled in Medicare Advantage during the years 2001, 2007, or 2013 are dropped from the
main estimation because the data on chronic medical conditions is not available for these individuals.

7The average ZIP+4 code contains fewer than five households.
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Table 1: INCIDENCE OF CHRONIC CONDITIONS

Condition Percent
Hypertension 45.1
Ischemic heart disease 30.9
Hyperlipidemia 26.7
Cataract 26.3
Rheumatoid arthritis, osteoarthritis 23.2
Diabetes 18.8
Anemia 18.3
Congestive heart failure 16.5
COPD 10.1
Glaucoma 9.6
Hypothyroidism 9.0
Dementia 8.8
Depression 7.5
Atrial fibrillation 6.9
Osteoporosis 5.7
Chronic kidney disease 5.0
Hyperplasia 4.8
Stroke, transient ischemic attack 4.8
Alzheimer’s disease 3.9
Prostate cancer 3.3
Asthma 3.0
Breast cancer 2.7
Colorectal cancer 1.5
Acute myocardial infarction 0.9
Hip fracture 0.9
Lung cancer 0.7
Endometrial cancer 0.2
Notes: This table reports the fraction of people over age 65 who had been
diagnosed with each chronic condition in 2001. It is based on data from
CMS’s chronic conditions warehouse file for the sample of 4.5 million peo-
ple.
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Table 2: MAPPING FROM COUNT OF CHRONIC CONDITIONS TO HEALTH QUARTILES

Health Quartile
1 2 3 4

Number of conditions 0-1 2-3 4 5+
Interpretation Excellent Good Fair Poor

index outperforms self-reported health status in predicting mortality, nursing home entry and

social security disability insurance recipiency. Obviously there is heterogeneity in the severity

of different conditions, but one severe condition rarely comes alone. If the immune system has

been compromised by a serious condition, other conditions tend to follow. For example, the

average number of chronic conditions, conditional on having at least one chronic condition, is

3.6. Conditional on having cancer, individuals have on average 4.7 chronic conditions.

Table 3 shows the fraction of individuals per type that are observed in 2001 and survive

until January 1, 2007. For example, out of all 65-70 year olds that had one or zero diagnosed

chronic condition in 2001, 90.0 percent lived to see the year 2007. At the opposite extreme, out

of all those older than 83 who were diagnosed with 5 or more chronic conditions in 2001, only

69.3 percent lived to see the year 2007. The rest of the table shows considerable heterogeneity

in survival rates by age and by health, with clear reassuring monotonicity in age conditional

on health and health conditional on age.

Table 4 shows the health transition rates from 2001 to 2007, conditional on survival until

2007. Out of all individuals with one or zero diagnosed chronic conditions in 2001, 38.4 percent

still have only one or zero diagnosed chronic conditions in 2007.
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Table 3: SURVIVAL RATES BY TYPE, FROM 2001 UNTIL 2006

Health Quartile
Age Excellent Good Fair Poor

65-70 90.0 87.5 82.8 69.3
71-76 84.3 82.6 78.3 64.5
77-82 75.0 72.6 67.7 53.4
83+ 54.4 49.3 43.1 31.0

Table 4: TRANSITION RATES BETWEEN DIFFERENT STATES OF HEALTH

Health Quartile 2007
Health 2001 1 2 3 4 Total

1 38.4 29.7 11.3 20.6 100.0
2 11.5 30.9 17.5 40.1 100.0
3 5.3 20.7 17.4 56.7 100.0
4 2.7 11.7 11.9 73.7 100.0

4.2. Residential Locations: Hospital Referral Regions

The geographic units that individuals can choose in the model are Hospital Referral Re-

gions (HRR)8. An HRR is a collection of ZIP codes, in which primary care providers refer to

the same hospitals and specialized care providers. This makes HRRs a natural unit of choice

to study residential sorting on health and health care. HRRs are contiguous geographic units

with populations of at least 120,000 individuals, and each HRR contains at least one hospital

that performs major cardiovascular procedures and neurosurgery. There are 306 HRRs in the

US, and they can be thought of roughly as cities. Large metropolitan areas may contain multi-

ple HRRs. To help visualize the geographic scale, Figure 2 provides a map of projected climate

change by HRR. The largest HRR in the sample contains 1.8 percent of the total sample popula-

tion and the median HRR contains 0.2 percent. Individuals in the CMS dataset are assigned to

8Hospital referral regions were defined by The Dartmouth Atlas.

21



Table 5: AMENITY LEVELS ACROSS HOSPITAL REFERRAL REGIONS, 2001-2006

Mean Median SD
Rentindex 336.0 283.7 174.9
Summer temperature (C) 30.9 30.5 2.9
Winter temperature (C) 6.7 6.0 6.9
Precipitation daily (mm) 2.7 2.9 1.0
Apparel stores 408.3 220.9 536.8
Dining places 1,342.8 821 1,537
Golf courses & country clubs 32.4 22.3 28.8
Movie theaters 13.1 8.2 14.3
PM 2.5 (microgram per m3) 12.1 12.4 2.2
Ambulatory care-sensitive hospital stays 78.7 77.5 19.2
(per 1,000 Medicare enrollees)
Notes: The mean, medians, and standard deviations presented in this table
are taken across HRRs. For any given HRR, the respective amenity level is
averaged across all years in the model period 2001-2006.

HRRs based on their ZIP code. Table 5 summarizes variation in amenity levels across HRRs.

4.3. Data on Climate Amenities

Data on climate are constructed from daily readings of temperature and precipitation by

NOAA Weather Stations, provided by the Global Historical Climatology Network and re-

trieved using the R package “rnoaa” (Menne et al., 2012b,a; Chamberlain, 2019). All NOAA

weather stations that continuously report temperature and precipitation from 1999 until 2012

are selected. There are 9,959 such stations in the US.

The daily maximum temperature is first averaged by station by month. Then the average

maximum daily temperature of the hottest month is determined to be the summer tempera-

ture, the average daily maximum temperature of the coldest month to be the winter temper-

ature. Precipitation is measured as an daily average per station per year. To measure climate
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amenities in the model period 2001-2006, summer temperature, winter temperature, and pre-

cipitation are averaged across the years 2001-2006, to reduce sensitivity of climate measures

to annual variation in weather. This process is repeated for the model period 2007-2012, by

averaging the climate amenity variables across all years in the model period. Including both

winter and summer temperature in the model provides a more nuanced measure of climate

compared to annual average temperature. Prior research has found people, and especially se-

niors, to be sensitive to temperature extremes, and asymmetrically more sensitive to extreme

heat compared to extreme cold (Albouy et al., 2016; Sinha et al., 2018b). The climate at a given

HRR is interpolated as the weighted average across all weather stations, weighted at the in-

verse squared distance in kilometers from each station to the population-weighted centroid of

each HRR.

Data on projected changes in climate come from the Climate Model Intercomparison Project

(CMIP6) of the World Climate Research Programme that will be used in the 6th Assessment

Report of the IPCC.9 The projection data is available in a global geopraphic grid of 100 km res-

olution, where over 1,000 points fall in the area of the United States. Following the approach of

Albouy et al. (2016), the projected climate of an HRR is approximated as the weighted average

of the projected climate at the four nearest grid points, weighted by the inverse square distance

between the HRR population weighted centroid and the four grid points in kilometers. Figure

2 provides maps of expected temperature changes by 2100 for the “business as usual” sce-

nario, where no large reductions in carbon emissions are assumed. Summer temperatures are

projected to increase between 4 and 9 degrees (C), while winter temperatures would increase

9Publicly available at https://esgf-node.llnl.gov/search/cmip6/. Its main innovation over CMIP5 is the
incorporation of changes in land use and other societal responses to changing climate into the future path of
climate (Eyring et al., 2016; O’Neill et al., 2016).
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between 3 and 14 degrees (C). Total annual precipitation is projected to change between -0.5

and 0.9 mm per day depending on location, which corresponds to -7 and 12 inches in annual

rainfall.

4.4. Housing Prices, and Other Location-Specific Amenities

The differences in cost of housing across HRRs are estimated using data from the 2000

Census 5 percent sample and the 2005-2012 American Consumer Survey, following the regres-

sion procedure from Bayer et al. (2009), which I describe in more detail in Section 5.3.2. Gross

rental prices are used to measure the per-period cost of living in an area, without reflecting

future expectations about asset value that are contained in real estate prices. For each year in

the model periods, gross rents are regressed on housing characteristics and public use micro-

data area (PUMA) specific intercepts. These PUMA specific rent indices are taken to be the

price premiums that have to be paid to live in a certain PUMA. The PUMA specific rent indices

are then aggregated into HRR specific rent indices based on crosswalks from PUMAs to zip

code tabulation areas, which can be aggregated into HRRs.10 The HRR-specific rent indices

are finally averaged across the years 2000, 2005, and 2006, to form a measure of the location-

specific rent premia throughout the model period 2001-2006.11 Local rental prices, adjusted

for housing characteristics, reflect the current cost of living in a certain place more clearly than

housing values, which contain expectations about future price developments. Rental prices

have been found to correlate most accurately with observable amenity levels (Banzhaf and

Farooque, 2013). All following amenities measures have been constructed on the HRR-level

10Crosswalks from PUMA (2000) to ZCTA were taken from the MCDC Geographic Correspondence Engine 2014.
11The American Consumer Survey does not contain information on PUMAs for the years 2001-2004, therefore

this geographic aggregation cannot be applied for these years.
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(a) Projected Changes in Summer Temperature (C)

(b) Projected Changes in Winter Temperature (C)

(c) Projected Changes in Precipitation Levels (Daily mm per m2)

Figure 2: EXPECTED CHANGES BY THE YEAR 2100 UNDER THE ”BUSINESS AS USUAL” SCENARIO
CMIP6 SSP 585.
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for each year from 2001 to 2006, and finally averaged across years to measure amenity lev-

els throughout the model period. Amenity levels for the model period 2007-2012 were built

analogously.

Data on fine particulate matter pollution (PM2.5) comes from air quality monitors that the

Environmental Protection Agency (EPA) operates. There are over 3,000 air quality monitors

in the US. Each ZIP+4 code is assigned the average annual daily pollution values of all sur-

rounding air quality monitors, weighted by inverse squared distance.12. The values are then

averaged across all ZIP+4 codes within an HRR.

Data on the amenity levels that characterize each HRR come from multiple sources and are

all publicly available. Quality of health care is measured as the incidence per 1,000 Medicare

enrollees of ambulatory care sensitive hospital stays (ACS). These are hospital stays that could

have been prevented through adequate provision of ambulatory care. These data are available

on an annual basis at the HRR level from the Dartmouth Atlas of Health Care.13

The annual Census Business Patterns (CBP) provide data on the number of establishments

by ZIP code and NAICS codes. All establishments classified as golf courses, country clubs,

dining places, apparel stores, or movie theaters are added up per HRR. These variables are

intended to capture a proxy for the cultural and social appeal of a location and are consistently

measurable at different points in time.

12These imputed data have been generously shared by the authors of Bishop et al. (2018)
13http://archive.dartmouthatlas.org/tools/downloads.aspx?tab=41
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Table 6: SUMMARY STATISTICS IN 2001

Mean age (years) 75.5
Mean number of diagnosed chronic conditions 2.9
Mobility from 2001 to 2006 (percent)
... across HRR 7.2
... across state 4.6
... across Census regions 2.4
Mortality (percent)
... until 2006 28.8
Number of observations (million) 4.5
Notes: Unconditional summary statistics of the full sample
in 2001.

4.5. Summary Statistics

Table 6 summarizes key features of the estimation sample. The mean age in the sample is

75.5 years in 2001 and the average person is diagnosed with 2.9 chronic conditions. The table

also shows the incidence of moving within the six year period from 2001 to 2006. Over 7 percent

of individuals move across HRRs throughout this period. 4.6 percent of individuals move

across state lines and 2.4 percent move across the four Census regions: Northeast, Midwest,

South, and West. Individuals who move more than once across HRRs within one model period

are dropped to ensure a clear definition of origin and destination.14

Finally, Table 7 summarizes unconditional moving patterns across Census regions. The

large numbers on the diagonal foreshadow the importance of moving costs. Most individuals

stay within their Census region. Conditional on moving across regions, the South is the most

important destination region.

14Only 1.3 percent of individuals in the raw sample move more than once within six years.
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Table 7: CROSS-REGIONAL MIGRATION FLOWS IN MODEL PERIOD 2001-2006

Destination
Origin Northeast Midwest South West Total
Northeast 96.8 0.3 2.5 0.4 100.0
Midwest 0.1 97.7 1.5 0.7 100.0
South 0.8 0.9 97.8 0.5 100.0
West 0.2 0.8 1.2 97.8 100.0
Total 20.1 25.6 39.1 15.2 100.0
Notes: Contains non-movers and one-time movers who have been observed
in 2001. The definition of region corresponds to Census regions.

5. Estimation

There are three key sets of model parameters to estimate. The parameters describing health

transitions are identified by differences in health transition rates among movers and stayers

conditional on health. They will be estimated by extending the econometric logic of Finkelstein

et al. (2021) procedure to a ordered choice framework. Second, the causal effects of place on

survival γsurv
j are identified by differences in survival rates among movers and stayers and

can be estimated independently using a procedure developed by Finkelstein et al. (2021). The

causal place effects of survival γj and health transition γh,τ
j are also of direct interest. Finally,

conditional on the parametric assumption for flow utility, the marginal utility coefficients of

amenities βτ and consumption ατ and parameters describing heterogeneity in moving costs are

identified by how households choose residential locations each period. They will be estimated

by adapting the dynamic sorting model from Bayer et al. (2016).
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5.1. Location-Specific Health Transition Probabilities

As noted earlier, I assume that people make residential location decisions based, in part,

on their knowledge of how living in different areas will affect their chances of transitioning

to worse states of health. These causal transition probabilities may differ from unconditional

health state transition probabilities due to spatial sorting on health. I use panel data on in-

dividual health transitions to estimate a set of casual location-specific transition probabilities

for each person type, τ. This strategy mirrors the estimation strategy of mortality fixed effects

from Finkelstein et al. (2021), with the additional benefit that unlike mortality, health can be

observed at multiple points in time for the same individual. Therefore, the location-specific

causal effects on health transitions can be estimated even more credibly without the need to

apply the more sophisticated selection-correction strategy detailed in Section 5.2.

For each health type τ in 2001, the probability of transitioning to health type τ′ in 2007 is

expressed as a function of age fixed effects ϕtr,τ
1,age, demographics, and location fixed effects δtr,τ

j ,

using an ordered logit model. Equation 6 shows the estimation equation. To calculate the fitted

location-specific transition probabilities for each type, I use the national average demographics

to eliminate confounding effects from changes in demographic composition across types.

Pi,j(τ, τ′) = f (ϕtr,τ
1,age1age + ϕtr,τ

2 demogi + δtr,τ
j 1j) + ηtr

i ∀τ (6)

The demographic variables included in the model are gender, race, and a proxy for low income.

The identifying variation of the effect of location on health transitions comes from spatial vari-

ation in the average health type-specific transition probabilities, netting out the effects of age

and local demographic composition. Estimating the change for each baseline type of health

29



addresses individual time-fixed confounders, reducing concern about sorting on unobserved

health. 15

5.2. Location-Specific Survival Probabilities

To estimate the causal effect that each location has on the probability of survival, I adapt

the estimation strategy of Finkelstein et al. (2021). Like the health transition probabilities, the

survival probabilities ŝτ
j are type and place specific and are assumed to be known by individu-

als when they make location decisions. Unconditional place-specific survival rates might differ

from causal survival rates due to spatial sorting on underlying health. Since death can only be

observed once, panel estimation is precluded. Finkelstein et al. (2021) use a selection correction

procedure to estimate place specific survival effects δsurv
j in a way that leverages variation in

survival among movers. The identifying variation comes from movers who move to different

destinations from the same origin location.

Equation 7 shows the estimating equation. Individual mortality mi is is regressed on age,

demographics demogi, health hi, and place fixed effects for movers and nonmovers.

log(mi) = ϕ1 agei + ϕ2 demogi + ϕ3 hi + δo
j 1j,orig + δd

j 1j,dest + δn
j 1j,nonmove + ηi (7)

Demographic variables contain gender, race, an interaction term, and a proxy for low income.

Health variables contain annual utilitization and a set of indicators for the presence of chronic

conditions. The location fixed effects δo
j , δd

j , δn
j capture the location specific mortality effects

15Sorting on unobservable, time-varying health remains a concern. Finkelstein et al. (2021) suggest that panel
estimates with individual fixed effects would be the “gold standard” to address spatial sorting. Since health
outcomes can be observed more than once while mortality cannot be observed after the event of death, spatial
sorting is more difficult to address when estimating location-specific effects on mortality.
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of each location δn
j for non-movers, and δo

j and δn
j for the origin and destination locations of

movers.

The location specific effects on mortality δd
j could be biased if movers sort into locations

based on unobserved health. To address this concern, Equation 8 shows how δ̂d
j is corrected

for spatial sorting on health, under the assumption that selection on unobserved health can be

approximated by selection on observed health.

ĥi = ϕh
1 agei + ϕh

2 demogi + ζo
j 1j,orig + ζd

j 1j,dest + ηh
i (8)

The fitted health stock from Equation 7, ĥi := ϕ̂3hi, is regressed on age, demographics, and

location specific fixed effects. δ̂d
j is then corrected by the estimated health-sorting effect ζ̂d

j . The

causal place-specific mortality effect γ̂j is then estimated as

γ̂j = δ̂d
j −

ŝd(δ̂o
j )

ŝd(ζ̂o
j )

ζ̂d
j (9)

ŝd(δ̂o
j ) and ŝd(ζ̂o

j ) are estimated as the standard deviations of δo
j and ζo

j in a splitsample boot-

strap. Finally, to translate the location specific mortality effects, γ̂j, into survival rates for a

model period of six years, the resulting estimates are converted to six-year periods using Equa-

tion 10.

ŝτ
j =

6

∏
t=1

(
exp(− exp(ϕ̂1 ageτ

t + γ̂j + ĥτ)
)

(10)

To survive one model period of six years, annual survival has to succeed six consecutive times.

Type specific health capital ĥτ is averaged across all non-movers of type τ.
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5.3. Dynamic Discrete Choice Model of Residential Sorting

The discrete choice model takes the estimated health transition probabilities and the es-

timated survival probabilities as given and uses them to infer the preference parameters that

rationalize individuals’ observed choices. The estimation framework builds on Bayer et al.

(2016). The standard assumption of an additive Type 1 Extreme Value random utility term εijt,

implies that the probability of individual i of type τ choosing location j can be expressed as

Pτ
j,t(l) =

exp(Vτ
j,t −MCτ

t (j, l))

∑k exp(Vτ
k,t −MCτ

t (k, l))
(11)

The lifetime utility values V and the utility cost of moving MC are estimated separately for

each type, and for the periods 2001-2006 and 2007-2012, with a maximum likelihood estima-

tion (Equation 13).16 Notice that the lifetime utility values are identified from observed choice

probabilities only up to a constant. Adding a constant to all estimated lifetime utility values

V does not alter the conditional choice probabilities P, in line with standard microeconomic

theory. To facilitate the estimation, the average V per type τ and time t is normalized to 0.

Lτ
i,t = ∑

j
log Pτ

j,t(l) 1(choicei,t = j) (12)

LLFτ
t = max

V,γ
∑

i
Lτ

i,t (13)

s.t. Vτ
t = lim

x→∞
Vτ

x+1 = lim
x→∞

Vτ
x + log(πtrue)− log(π(Vτ

x )) (14)

π(V) are the fitted population shares that arise if lifetime utility values are V, πtrue are the true

population shares. x denotes the number of iterations. Moving cost are modelled as a utility

16Maximizing over 306 location-specific parameters for Vτ
t would be computationally prohibitive, so the values

of Vτ
t are estimated by applying a Berry contraction mapping (Equation 14) (Berry, 1994).
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cost. This addresses the fact that moving is costly not only financially, but also psychologically,

in ways that cannot be directly observed (e.g. finding new doctors, moving away from family,

friends, and familiar neighborhoods). Moving cost are parametrized with a flexible function of

distance in kilometers (Equation 15). This allows moves of longer distances to be more costly,

but does not restrict ex ante whether moving cost are convex or concave in distance.

MCτ
t (k, l) = µτ

1 1state(k, l) + µτ
2 1>100km(k, l) + µτ

3 1>500km(k, l) + µτ
4 1>1,000km(k, l) (15)

+ µτ
5 1>1,500km(k, l) + µτ

6 1>2,000km(k, l) + µτ
7 1Northeast-Midwest(k, l)

+ µτ
8 1Northeast-South(k, l) + µτ

9 1Northeast-West(k, l) + µτ
10 1Midwest-South(k, l)

+ µτ
11 1Midwest-West(k, l) + µτ

12 1South-West(k, l)

This estimation process is performed separately for each of the 16 age-health types, and

can therefore capture substantial heterogeneity in relative preferences and in the cost of mov-

ing. An indicator for moves that cross state lines is included to capture additional costs that

may arise from adjustment to a new state (e.g. getting a new driver’s license and learning state

tax laws). In addition, there are fixed effects included for all pairwise origin-destination combi-

nations of the four Census regions, to allow for systematic variation in moving costs that might

be associated with particular migration paths, such as the degree of differences in cultural and

urban amenities that are shaped by aggregate migration flows.17

17Table 12 illustrates migration flows across regions.
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5.3.1. Identification of Moving Cost and Utility Values

As in Bayer et al. (2016), implementing the dynamic discrete choice estimator requires

normalizing some parameters. The individual random utility parameter ετ
ijt is i.i.d. according

to a Type I Extreme Value distribution with location parameter µ = 0 and a shape parameter

β, that is assumed to be common to individuals of all types. Conditional on this assumption,

the shape parameter is normalized for each type, analogous to Bayer et al. (2016). Given this

normalization, the parameters describing variation in moving costs are identified by the rates at

which people make moving versus staying decisions and the variation in distance conditional

on moving. The identifying variation for mean lifetime utility values V comes from the cross-

section of location decisions, conditional on moving cost. Mean lifetime utility values Vτ
t per

type τ and period t are only identified up to an additive constant. I estimate Ṽτ
t , where Ṽτ

t =

Vτ
t + aτ

t with some unknown constant aτ
t . Normalizing the average mean utility value to zero

in the estimation implies that the unidentified constant equals the average mean utility values

per type per period in absolute terms.

The assumption that the individual random utility component is distributed with a Type

1 Extreme Value distribution also allows me to reformulate the expected future utility as an

expectation over the standard log-sum formula taken with respect to the future health state.18

E(max
k

Vτ′
k,t+1 −MCτ′(k, j) + εik,t+1|j, τ) = (16)

E

[
log ∑

k
exp

(
Vτ′

k,t+1 −MCτ′(k, j)|k, τ′
)
+ cEM

∣∣∣∣∣ j, τ

]

18cEM is the Euler-Mascheroni constant. If X is a random variable, distributed along a Type 1 EV distribution with
location µ and scale β, the expected value of X is µ + β · cEM.
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To infer flow utility values uτ
t , Equations 4 and 16 are combined as follows

uτ
j,t = Vτ

j,t − β sτ
j,t Eτ

j,t

[
cEM + log ∑

k
exp(Vτ′

k,t+1 −MCτ′(k, j))

]
− β (1− sτ

j,t) θ (17)

In overly simple terms, the current flow utility uτ
t is computed as the difference between

the mean lifetime utility values at two different points in time. If there were no type transitions,

no uncertainty, and no time discounting, inferring u would amount to taking simple differences

u1 = V1−V2. To see how the current flow utility is identified, consider this simplified example:

The lifetime utility values V are identified up to a constant, per type τ and per time t. If

V1,1 is the utility value of location 1 in period 1, and V1,2 is the utility value of location 1 in

period 2, their difference identifies the flow utility u1,1 in location 1, period 1. Call the true

unidentified utility constant at time 1 a, and the true unidentified utility constant at time 2 b, so

the estimation yields Ṽ1,1 = V1,1 + a and Ṽ1,2 = V1,2 + b. Then the flow utility will be computed

as ũ1,1 = Ṽ1,1 − Ṽ1,2 = V1,1 −V1,2 + a− b. When the estimated flow utilities ũ are decomposed

to recover the model parameters ατ and βτ, the unidentified constant a − b will be absorbed

into the regression constant. The differences in flow utility values u would be identified off of

the differences in lifetime utility values V.

In a dynamic setting with type transitions, more restrictions need to be placed to identify

variation in u in order to ultimately identify the model parameters ατ and βτ. In a simple

extension to the example above, consider the possibility of two different health types i and

ii, where the transition to type i in period 2 occurs with probability p. Estimating lifetime

utility values for each period and each type yields Ṽi
1 = Vi

1 + ai, Ṽii
1 = Vii

1 + aii, Ṽi
2 = Vi

2 + bi,
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Ṽii
2 = Vii

2 + bii. Now

ũi
1 = Ṽi

1 − pṼi
2 − (1− p)Ṽii

2 = Vi
1 + ai − p(Vi

2 + bi)− (1− p)(Vii
2 + bii)

= ui
1 + ai − pbi − (1− p)bii

ũii
1 = Ṽii

1 − pṼi
2 − (1− p)Ṽii

2 = Vii
1 + aii − p(Vi

2 + bi)− (1− p)(Vii
2 + bii)

= uii
1 + aii − pbi − (1− p)bii

To be able to estimate the model parameters ατ and βτ via a decomposition of ũ, I assume

that ai = bi and aii = bii. Intuitively, this assumption requires that conditional on maintaining

the same health status, individuals are indifferent to aging. More precisely in the context of this

study, the assumption requires that a perfectly healthy 65 year old in the period 2001-2006 is

just as happy as a perfectly healthy 71 year old in the period 2007-2013. Finally, notice that the

type transition probabilities p depend on the current type i versus ii and vary across locations.

Therefore, when I estimate the model parameters ατ and βτ through a decomposition of ũ, I

pool the estimated ũ values across health types for each given age type, and include interac-

tions between transition probabilities and health type dummies. The previously unidentified

constants are thus identified after imposing this assumption, and the estimated correction con-

stants are included in Table 14. The fact that the estimated type-specific correction constants

are monotonically decreasing in absolute terms from health type 1 to health type 4 is intuitively

appealing because it is consistent with the idea that better health is more desirable.

In short, estimates for current flow utility values ũ are obtained by plugging in lifetime

utility value estimates Ṽ, moving cost estimates M̂C, estimated survival rates ŝτ
j and health
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transition probabilities P̂j(τ, τ′).

ũτ
j,t = Ṽτ

j,t − β sτ
j,t Eτ

j,t

[
cEM + log ∑

k
exp(Ṽτ′

k,t+1 − M̂C
τ′

t+1(k, j))

]
(18)

Appendix Section A.1 provides more technical details. Finally, the discount factor β is

set to 0.833, extrapolating the 3 percent annual discounting from Aldy and Viscusi (2008) to a

period of 6 years.

5.3.2. Identification of Marginal Rates of Substitution

To obtain measures for HRR-specific housing prices paid by seniors, rent price indices are

estimated for each HRR. Specifically, gross rents pi,j,t are regressed on physical housing char-

acteristics Hi,t and location-fixed effects to obtain location-specific rent price intercepts. Data

on gross rental prices and housing characteristics comes from the 2000 Decennial Census, re-

stricted to individual observations over the age of 65.19 This captures how much in additional

rent a given individual will pay if they move from one HRR to another. These intercept dif-

ferences are estimates of the true difference in housing costs across locations only with the ad-

ditional assumption that the choice of housing quantity does not vary across locations. Rents

capture the cost of housing for renters, and the opportunity cost of using the house instead

of renting it out for home owners. Notice that even when concerns about future house prices

affect house sales decisions due to bequest motives, home-owning seniors still have the option

to rent out the house and locate elsewhere in the mean time.

19The place fixed effects δ̂
p
j are estimated for 2000 PUMAs. To reassemble these PUMA-specific estimates to the

HRR level, a crosswalk provided by the Missouri Data Center assigns 2000 PUMA to 2010 Census blockgroups.
The 2010 Census block groups are then mapped on ZIP+4 codes and finally averaged across all ZIP+4 codes
per HRR.
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pi,j,t = βp Hi,t + δp 1j + ε
p
i,t (19)

Estimates for current flow utility û are then regressed on local amenities Xj,t and the HRR-

specific house prices pj,t to obtain marginal utility of amenities, βτ, and prices, ατ, for each

age type and health type. These parameters are then used to compute the willingness to pay

(WTP) for amenities by type as βτ

ατ . Estimating marginal utilities raises a standard concern about

endogeneity. Unobserved amenities can increase both the estimated utility levels ûj,t and be

capitalized into local housing prices pj,t. Therefore, housing prices need to be instrumented in

order to estimate ατ consistently.

I develop instruments for price by adapting the procedure from Bayer and Timmins (2007).

To define the most similar HRR in type space, a principal component analysis (PCA) is run on

all observed amenities. The intuition for this approach is that in a spatial housing market equi-

librium, the price of housing in location j will be a function of the attributes of locations that

are close substitutes. Focusing on physically distant locations mitigates potential spatial cor-

relation in unobserved attributes. The PCA reveals the most important dimensions of joint

variation in amenities. The Euclidean distance between all principal components determines

the most similar location, a.k.a. the nearest neighbor in type space. To exclude geographically

adjacent locations, admissible nearest neighbors need to be at least 150 kilometers (approxi-
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mately 93 miles) away and belong to a different state.20

pj,t = Xj′,t β̃ + ξ̃j′ (20)

ûτ
j,t = Xj,t βτ + pj,t ατ + ξτ

j (21)

Equation 20 shows the first stage of the IV. It regresses housing prices in location j on

amenity levels of location j′, where location j′ is the nearest neighbor of location j in the amenity

space. Equation 21 shows conceptually the decomposition of mean flow utility values û on

local prices and amenity levels. The full decomposition equation employed in this estimation,

accounting for the previous normalization of Ṽτ
t , is detailed in Appendix Section A.1.

6. Results

6.1. Survival and Health Fixed Effects

Figure 3 provides a map of the estimated place-specific survival effects. Darker shades

represent higher probabilities of survival. Notice that these place-specific effects operate con-

ditional on age and most importantly, conditional on current health type.

With the estimated survival rates and health transition rates, life expectancy for a given

individual at age 65 in a given state of health can be calculated for each of the 306 available

locations. Figure 4 shows a whisker plot of life expectancy at age 65 across locations, for each

initial type of health. What stands out is that the variation across space conditional on health

20A plot of the first and second principal component can be found in Appendix Figure 9. Places that are plotted
close to each other are similar in amenities.
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Darker shades indicate higher probability of survival, conditional on health status.

Figure 3: ESTIMATED PLACE-FIXED EFFECTS ON SURVIVAL

is larger than the variation in median life expectancy across health types at age 65.

6.2. Moving Cost Parameter Estimates

Moving costs and mean lifetime utility values are estimated separately for each age and

health type. To develop intuition, Table 8 reports the moving cost parameters from a pooled

estimation over all types. A complete set of heterogeneous moving cost parameters by type

with bootstrapped standard errors is reported in the Appendix Table 13.

Table 8 shows that moves of relatively short distances are relatively expensive, indicating a

high fixed utility cost of moving. An in-state move between 100 and 500 km is estimated to cost

4.91 utils, which is larger than the range of mean lifetime utils across space (-2.56, 1.80). The

distance parameters add up sequentially. For example, an in-state move of 501 km is estimated
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Figure 4: SPATIAL VARIATION IN LIFE EXPECTANCY AT AGE 65

Table 8: MOVING COST PARAMETER ESTIMATES

Cross state 3.14
Distance indicator
>100 km 4.91
>500 km 0.25
>1,000 km -0.08
>1,500 km -0.51
>2,000 km 0.88
Origin-destination combinations
Northeast-Midwest 1.36
Northeast-South -0.06
Northeast-West 0.19
Midwest-South 0.32
Midwest-West 0.03
South-West 0.21
Estimated moving cost parameters of
Equation 15 for full sample, model
period 2001-2006. For full table of all
types see Table 13
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to cost 5.16 utils. Moving across state lines increases costs further. Moving costs increase in

distance at a decreasing rate and decrease between 1,000 and 2,000 km, suggestive of concave

moving costs up on a moving distance until 2,000 km. Moving longer distances than 2,000

km appears to again be more costly. Indicators for cross-region moves are included to capture

unobserved factors that drive popular migration patterns. For example, the high estimated

cost for moves between the Midwest and Northeast reflect the fact that very few moves occur

between these two adjacent regions. The slightly negative additional moving cost for moves

from the Northeast to the South reflects the popularity of the South as a destination for seniors

from the Northeast (Table 12).

6.3. Willingness to Pay for Local Amenities

Amenities are an important determinant of individual location decisions.21 Figure 5 shows

the estimates for annual marginal willingness to pay (WTP) for climate amenities in 2000 USD.

More precisely, these are estimates for the annual WTP to change climate in the current pe-

riod.

For higher summer temperatures, the younger and healthier types even have positive val-

uations. The WTP estimates for summer temperature have a distinct trend in age and in health:

older and sicker types exhibit WTP to avoid summer heat, other than younger and healthier

types who appreciate it. For example, for the youngest types aged 65-70, annual WTP for a

1C increase in summer temperature ranges from 80 dollars for the healthiest types to -4 for the

sickest types. For the oldest type aged 83 and older, the analogous range is -58 dollars to -151

dollars.

21The adjusted R2 is higher than 50 percent for all second stage decompositions.
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Figure 5: ANNUAL MWTP FOR AMENITIES BY AGE AND HEALTH TYPE

Whisker plots with 95 percent Confidence Intervals from B = 200 bootstrap resamples.
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For higher winter temperatures, the estimated valuation appears to be consistently posi-

tive across all types. Contrary to the findings of Albouy et al. (2016) and Sinha et al. (2018b),

individuals appear to value an increase in average winter temperature more highly than a

decrease in average summer temperature. Across all types, the WTP for 1 C higher average

temperature in winter is consistently positive and ranges between 62 and 170 dollars.

Valuation for humidity - proxied with average daily precipitation - is consistently negative

for all types. Relatively younger and healthier types seem to be less sensitive to humid climate,

but view humidity increasingly as a disamenity as health worsens and as they get older. The

annual WTP for 1mm increase in daily precipitation ranges from -83 dollars for the youngest

and healthiest to -367 dollars for the oldest types. These numbers might seem quantitatively

more important than the WTP for changes in temperature, but a 1mm daily rainfall would in

fact mean a notable increase since the average daily rainfall is 2.7mm.

Results of WTP for non-climate amenities are mostly intuitive. For example, the annual

WTP to reduce PM 2.5 by one microgram ranges from 265 dollars for the youngest types to

67 dollars for the oldest types. Valuation for social amenities like golf courses, movie theaters,

apparel stores and dining places also appears to be reassuringly positive. For tractability, the

WTP for amenities other than climate is restricted to vary only by age type.22

6.4. Model Fit

The estimated model does a reasonable job in predicting moves compared to Bayer et al.

(2016) who focused on a single metropolitan area. Using the same diagnostic measures of

22A complete set of marginal utility estimates for all types and amenities with standard errors is reported in
Appendix Table 14.

44



Figure 6: MODEL FIT PER LOCATION

Predicted population size relative to actual population size per HRR for model period 2001-2006

model fit as their study I find that, across the full sample, 96 percent of individuals choose a

location from the top 5 percent of their respective choice set, ranking locations by their model

predicted choice probabilities. Note that this number includes a large mass of individuals who

do not move at all. Conditional on moving, 45 percent of individuals choose a location from

the top 5 percent of their choice set, and 65 percent choose a location from the top 15 percent of

their choice set. In comparison, Bayer et al. (2016) found that 31 percent of households choose a

neighborhood that would have been ranked in the top 5 percent of their choices and 47 percent

choose one from the top 10 percent of ranked choices.

Figure 6 provides a map of predicted population size relative to actual population size per

HRR, resulting from fitted location choices in model period 2001-2006. The median prediction

error in population size across locations is -3.5 percent.
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7. Climate Change

As an illustrative example, I simulate climate change projections for 2100 as if they had oc-

curred in 2001, the first model period, and remain unchanged thereafter. This acts as a discrete

shock to climate amenity levels, and it also affects survival rates and health transition rates.

Then I use my model estimates to gauge the extent to which people may choose to adapt by

moving, along with the associated health implications and welfare implications. In addition

to migration, the key channels affecting welfare include the consumption value of climate and

the health investment value of climate. I quantify the relative magnitude of each channel.

Data on projected climate change in terms of average summer winter temperature, aver-

age winter temperature, and average daily precipitation levels comes from the World Climate

Research Programme. I simulate these changes for a “business as usual” scenario23, in which

there are no significant reductions in carbon emissions (O’Neill et al., 2016). Temperature and

precipitation data are available on a global grid with a nominal resolution of 100 kilometers.

Over 1,000 grid points fall in the continental US. I project the gridded data onto HRRs by spatial

interpolation, using inverse squared weighted distances of the closest four grid points similar

to Albouy et al. (2016). Figure 2 shows a map of the implied changes to average summer tem-

perature, winter temperature, and average daily precipitation.

7.1. Predicting Counterfactual Mortality and Health Transition Rates

To predict how climate change would affect mortality and morbidity in the climate change

scenario, the estimated HRR fixed effects for mortality and morbidity from Equations 6 and

23World Climate Research Programme Database CMIP6 ScenarioMIP SSP585
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7 are regressed on all observed amenities. Notice that the resulting coefficients are not causal

estimates, they merely describe how the location-specific fixed effects co-vary with local char-

acteristics. The location-specific fixed effects in question are γtr,τ
j from Equation 3 and γj from

Equation 2. The regression coefficients are reported in Table 9. Higher temperatures are found

to be associated with higher mortality and morbidity. Humidity, proxied by precipitation, has

ambiguous effects. The estimated marginal effects of the climate variables are multiplied by the

predicted changes in temperature and precipitation in order to predict counterfactual mortality

and health transition rates. Since both the survival rates (Equation 10) and the health transition

rates (Equation 6) are non-linear functions of the place fixed effects, the marginal effects of cli-

mate change on health will be non-linear across types. Specifically, the estimated parameters

imply that warmer temperatures will have larger negative effects on health for older and sicker

types.

To simulate how climate change would affect individuals’ choices and welfare, it is nec-

essary to first calculate place-specific lifetime utility values under actual and counterfactual

conditions. Equation 17, rearranged for V on the left hand side, provides the foundation for a

bottom-up approach to constructing the values of V, described in Equation 22. The terminal

period is defined to be the period after age type 4. In this terminal period, the individual con-

sumes only their flow utility and dies with certainty at the end of the period. This restriction

provides a reasonable approximation to the data in which less than one percent of seniors are

older than 95 years24.

Lifetime utility of age type 4 is constructed for each possible health type, as outlined in

24According to the Population Pyramid Project, the share of 95+ year olds among the senior population (65+) was
0.96 percent in the year 2000.
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Table 9: MARGINAL EFFECTS OF AMENITIES ON PLACE-SPECIFIC HEALTH AND MORTALITY

Mortality Health
Rentindex (USD 2000) -0.0001 0.0003

(0.0000) (0.0000)
Summer (C) 0.0016 0.0010

(0.0013) (0.0024)
Winter (C) 0.0025 0.0032

(0.0005) (0.0010)
Precipitation (mm) -0.0102 0.0282

(0.0034) (0.0066)
Apparel stores (log) -0.0588 0.0596

(0.0128) (0.0248)
Dining places (log) 0.0622 0.0223

(0.0150) (0.0291)
Golf courses (log) -0.0048 0.0364

(0.0062) (0.0120)
Movie theaters (log) -0.0002 -0.1357

(0.0080) (0.0155)
PM 2.5 (mg per m2) -0.0018 0.0206

(0.0013) (0.0026)
Ambulatory care-sensitive hospital stays -0.0003 0.0633
(per 1,000 Medicare enrollees) (0.0035) (0.0068)
Constant -0.0571 -0.8676

(0.0620) (0.1199)
N 306 1,224
R2 0.40 0.41
Adjusted R2 0.38 0.40
Notes: Dependent variables: Causal place fixed effects for mortality
δ̂j and health transition δ̂τ

j . Place fixed effects on health transition are
pooled across initial health types. Higher values imply higher mortal-
ity and higher rates of transition to worse states of health. Standard
errors in parentheses.
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Equation 22. The ‘future’ lifetime utility of age type 4 is simply the flow utility of the terminal

period, less moving costs, depending on the current location, weighted by the probability of

transitioning to a different state of health. Next, the flow utility of age type 3 is calculated

for each possible health type, as the sum of the current flow utility plus the discounted lifetime

utility of age type 4, which is the lifetime utility in the next period, again less moving costs, and

weighted by the probability of transitioning to a different health type. This recursive structure

is applied until age type 1.

I make two assumptions in order to build flow utility measures for future periods. First, I

assume that individuals are fully informed about future amenity levels and average rent index

levels in the period 2007-2012 when making their location decisions in the period 2001-2006.

Second, I assume that individuals expect these future amenity levels to remain constant fur-

ther into the future. In other words, I assume perfect foresight for one period and constant

expectations thereafter. As part of this counterfactual, it is only relevant what individuals as-

sume in the period 2001-2006 with respect to the period 2007-2012. In this counterfactual, there

are no more decisions being made in the period 2006-2012 that could be affected by shifted

expectations due to the housing bust in this period.

V̂τ
j,t = ûτ

j,t + β ŝτ
j,t Eτ

j,t

[
cEM + log ∑

k
exp(V̂τ′

k,t+1 − M̂Cτ′

t+1(k, j))

]
+ β (1− ŝτ

j,t) θ (22)

Following the strategy outlined earlier, the utility value of death is normalized to be equal to

the value of living in the least desirable place in the poorest state of health with certainty.
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7.2. Welfare Implications

The annual willingness to pay (WTP) to avoid this climate change scenario varies across

health types, ages types, and initial locations, ranging from $1,431 to -$3,813. Negative num-

bers amount to a welfare benefit from the climate change scenario. Perhaps surprisingly, the

population weighted average WTP is negative (-$352); i.e. the average senior benefits from

the combined health and amenity effects of climate change. This finding is driven by the large

WTP for warmer winter temperatures discussed earlier. Figure 7a summarizes heterogene-

ity in welfare effects by reporting the WTP by (age, health) type. The youngest types benefit

the most. The youngest and healthiest types have an average annual WTP of $1,357. This

stems from their relatively strong preferences for warmer winters, their weaker preferences for

warmer summers, and their relative indifference to additional precipitation (Figure 5a and 5c).

In contrast, older, sicker types are affected relatively negatively by hotter summers and higher

precipitation.

Figure 7 decomposes the mechanisms underlying the WTP measures by contrasting the

average WTP to avoid the climate change scenario (Figure 7a) with an the average WTP from

an alternative scenario that ignores climate change’s effects on health and survival (Figure 7b).

The dashed horizontal lines show the population-weighted averages. If there were no effects

on health and mortality, the WTP for the changes in climate would be as high as $1,488 for

the youngest and healthiest types, which is $131 higher than when health and survival effects

are taken into account. The difference in the population-weighted average WTP between cli-

mate change affecting only enjoyment of amenities versus also affecting health and survival is

$151. Younger and healthier types are somewhat less vulnerable to the averse health effects

50



U
S

D
 (

20
00

)

−
15

00
−

10
00

−
50

0
0

50
0

10
00

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Age 65−70 Age 71−76 Age 77−82 Age 83+

Health Health Health Health

(a) CLIMATE CHANGE

U
S

D
 (

20
00

)

−
15

00
−

10
00

−
50

0
0

50
0

10
00

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Age 65−70 Age 71−76 Age 77−82 Age 83+

Health Health Health Health

(b) AMENITY EFFECT ONLY

Figure 7: WTP TO AVOID CLIMATE CHANGE BY AGE AND HEALTH TYPE

of warming in the short run, but they have longer remaining life spans that are negatively af-

fected, driving up the cost they incur from averse health effects. Still, their discounted values of

the future negative health consequences are more then offset by the enormous positive effects

of warmer temperatures on their current utility flows.

Taking away the opportunity to move comes with a large welfare cost. In a world without

climate change, the annual welfare cost of being stuck in the initial location is estimated at a

population weighted average of $2,085. In the scenario with climate change, the annualized

welfare cost of not being able to move is $2,092. This comparison provides a quantification for

the role of migration in adaptation to climate change within one model period of six years. In-

dividuals are strictly worse off and incur large welfare costs if they are not able to re-optimize

their location choice, but not being able to move in response to climate change adds only $7
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Figure 8: SPATIAL DISTRIBUTION OF WELFARE GAINS FROM CLIMATE CHANGE UNDER “BUSINESS AS
USUAL”

compared to the welfare cost of not being able to move at all. This result is due to the enor-

mous utility cost of re-optimizing, i.e. moving. While the climate change scenario clearly

generates non-zero welfare effects, these welfare effects are not sufficient to justify large mov-

ing responses. Very few individuals would actually alter their location choices in response.

Therefore, adaptation to climate change through moving is found to play a quite small role, at

least within the time horizon of one model period. Across types, the welfare cost of not being

able to adjust is higher for younger and healthier types. Over a longer time horizon, migra-

tion responses will certainly play a larger role, but this would require introducing new cohorts,

because the lion’s share of the initial cohorts will have died within a few model periods.

After introducing climate change and altering the survival probabilities accordingly, life

expectancy at age 65 reduces by 0.18 years on average. Due to the small migration responses

in the counterfactual, this change in life expectancy is not mitigated by migration.

Finally, Figure 8 shows a spatial map of population-weighted aggregate gains and losses.
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Green indicates welfare gains, blue indicates welfare losses. Notice that the regions that most

stand to gain are those with large expected increases in winter temperature, modest expected

increases in summer temperature, and lower or unchanged precipitation levels.

7.3. Comparison to Prior Literature

My findings on WTP for summer temperatures and winter temperatures differ from prior

studies (Albouy et al., 2016; Sinha et al., 2018b). Individuals appear to value warmer winters

more highly than cooler summers, and in the case of summer temperature, some younger and

healthier types even appear to have a positive valuation for warmer summer temperatures.

Both the model and the sample used in this study differ in several ways from the prior

literature. The sample focuses exclusively on seniors over the age of 65 in contrast to the prior

literature’s primary focus on younger households. In addition, my moving cost specification is

more flexible than in prior studies, and a move is defined as occurring within a relatively nar-

row window of five years. Perhaps most important, I depart from prior climate applications

by modeling people as being forward looking, while simultaneously recognizing that climate

affects health and survival. In contrast to prior studies, this allows me to disentangle the con-

sumption value of climate amenities from the anticipated future health effects of climate, both

of which are important for assessing welfare changes.

In contrast to Sinha et al. (2018b) and Albouy et al. (2016)’s results for younger households,

I find that older adults value moderate winters more highly than moderate summers. I find the

population-weighted mean annual MWTP for a 1C reduction in average summer temperature

is 14 dollars per individual and 117 dollars for a 1C increase in average winter temperature,
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whereas Sinha et al. (2018b) find annual MWTP of 1,424 dollars per household for a 1F re-

duction in average summer temperature and 1,035 dollars per household for a 1F increase in

winter temperature when they use their most directly comparable subsample of households

older than 55 years. One important difference that drives the difference in results is the defin-

tion of a move. While Sinha et al. (2018b) define a move whenever the current location of an

individual is unequal to their location of birth, I define a move when the location in the be-

ginning of 2007 is different from the location in the beginning of 2001. This means that my

definition of moves captures recent decisions and, given that location decisions are subject to

substantial inertia, reflect current preferences over location characteristics among seniors. The

‘lifetime’ definition of moves covers moves that might have occurred a long time ago during

childhood or due to past job opportunities.

7.4. Caveats and Possible Directions for Future Research

It is important to note that my estimates for the WTP to avoid climate change are limited

to the extent to which changes in average temperatures and precipitation affect health and

neighborhood amenity values. The effects of climate change on natural disasters, (e.g. floods,

hurricanes, wildfires), agricultural yields, manufacturing, and other sectors of the economy are

left to future research.

Another channel worth exploring in future research is the volatility in weather, including

the risk of and damage from catastrophic weather events. The migration responses to the

climate change scenario have been found to be relatively small due to the large utility cost

of moving. It would be interesting to investigate how catastrophic events (e.g. Hurricane
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Katrina) affect welfare and migration responses over longer periods. More broadly, it would

be interesting to extend this model to make the supply of housing endogenous to population

flows, building on insights from Diamond (2016) and Murphy (2018).

8. Conclusion

Residential sorting models have been widely used to extract information about consumer

preferences from housing market outcomes that can be used to evaluate distributional welfare

effects of policies targeting urban and environmental amenities. I have extended the literature

by developing and estimating a dynamic model of location choice that incorporates individ-

ual heterogeneity in health and age among forward-looking agents who anticipate the future

health consequences of their current location choices. The framework I built is highly flexible

and can be applied to any setting in which the welfare effects of changes in local amenities

need to be quantified. I estimated the model using administrative data containing detailed in-

formation about the evolution of individual health, mortality and location choice. My results

suggest that seniors are forward looking in choosing locations based on their preferences for

comfortable climates, for avoiding air pollution, and for access to high quality of health care,

in part, because they anticipate how these amenities will contribute to their future health and

wellbeing.

I used the model estimates to simulate how sorting patterns, health, and welfare would

be affected by future climate change under a “business as usual” scenario for carbon emis-

sions, I find that, on average, younger and healthier seniors benefit from the combined health

and amenity effects of climate change, due to their relatively strong preferences for warmer

55



climates. Older and sicker seniors are made relatively worse off by the hotter summers and

increased humidity. Ignoring climate change’s adverse effects on health would cause me to

understate climate change’s welfare losses. I add to the literature by exploring how the welfare

effects of climate change vary systematically with individual characteristics and across space.

For example, the Midwest is projected to have warmer winters but only moderately warmer

summers, leading to welfare gains for many current residents. In contrast, other regions with

hotter summers and higher humidity incur welfare losses.
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A. Appendix

A.1. Normalization of Lifetime Utility

Estimated lifetime utility values Ṽ have to be normalized for each type for technical rea-

sons. In this estimation, the mean lifetime utility of across locations is set to zero for each

type. This implies that each estimated utility value is a sum of the true utility value plus a

type-specific normalization constant Ṽτ
j = Vτ

j + mτ. When calculating ũ from Ṽ, a “normaliza-

tion bias” arises since Ṽ enters the equation several times. The following Equation 23 rewrites

Equation 18 with Ṽτ = Vτ −mτ to illustrate the relationship between the estimated ũ and the

true u.

ũτ
j,t = Vτ

j,t − sτ
j,t · βEτ

j,t

[
cEM + log ∑

k
exp(Vτ′

k,t+1 −MCτ′
t+1(k, j))

]
︸ ︷︷ ︸

= uτ
j,t+β(1−sτ

j,t)θ

− (mτ
t − sτ

j,t · βEτ
j,t

[
mτ′

t+1

]
)︸ ︷︷ ︸

normalization bias

ũτ
j,t = Xj,tβ

τ + pτ
j,tα

τ + β(1− sτ
j,t)θ − (mτ

t − sτ
j,t · βEτ

j,t

[
mτ′

t+1

]
) (23)

The expectation in the last equation is with respect to the uncertainty about future health type

τ′. Since there is a finite number of types that an individual can transition to, it can be rewritten

as

ũτ
j,t = Xj,tβ

τ + pτ
j,tα

τ + β(1− sτ
j,t)θ −mτ

t + sτ
j,t β ∑

τ′
Pτ

j,t(τ, τ′) mτ′
t+1

The normalization bias has two components: (1) the type-specific constant mτ, and (2) the

sum of future type-specific constants, weighted by the product of place-specific survival and

health transition probabilities. To estimate the coefficients βτ and ατ, the estimated ũ’s will

be regressed on amenities X, prices p, and a set of correction variables to address the afore-
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mentioned normalization bias (Equation 24). The regression is run separately for each age

type. To address component (2), the product of survival probabilities ŝτ
j,t and health transition

probabilities P̂j,t(τ, τ′) for all possible future health types τ′ will be included as a separate set of

variables. Under the assumption that for a given state of health, lifetime utility does not change

in age (i.e. mτ
t = mτ

t+1), the type specific constant can be added to the respective product of

survival and health transition probability. The probability of death (1− s) cannot be added as

a separate variable to obtain θ as a regression coefficient because the health transition proba-

bilities P add up to 1. Therefore, the utility value of death will be absorbed into the regression

constant, but cannot be identified separately. When simulating counterfactual outcomes, life-

time utility values need to be calculated based on counterfactual amenities, survival rates, and

health transition probabilities. To account for the utility value of death, it will be assumed that

an individual is indifferent between death and being with certainty in the worst state of health,

in the location with the lowest mean utility value, without the possibility of moving. Equation

24 specifies the estimation equation for decomposing ũ.

ũτ
j,t = βτXj,t + ατ pj,t + ∑

τ′ 6=τ

mτ′ · (β ŝτ
j,t P̂j,t(τ, τ′))+mτ

(
β ŝτ

j,t P̂j,t(τ, τ)− 1
)
+ β (1− ŝτ

j,t)θ (24)
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Table 10: SHARE OF INDIVIDUALS PER HEALTH TYPE, CONDITIONAL ON AGE IN 2001

Health Type
Age 1 2 3 4 Total
65-70 50.1 28.2 8.9 12.8 100.0
71-76 31.6 32.5 13.0 22.9 100.0
77-82 23.7 31.0 14.5 30.8 100.0
83+ 18.7 29.1 14.8 37.3 100.0

Table 11: NUMBER OF INDIVIDUALS PER TYPE IN 2001

Health Quintile
Age 1 2 3 4
65-70 675,300 380,104 120,312 172,025
71-76 404,100 414,987 165,996 291,872
77-82 246,765 322,642 150,853 320,983
83+ 158,902 247,236 125,932 316,848

Table 12: CROSS-REGION MIGRATION FLOWS 2001-2006

Destination
Origin Northeast Midwest South West Total
Northeast 55.0 4.0 34.9 6.1 100.0
Midwest 2.5 61.9 24.8 10.9 100.0
South 10.7 12.2 70.3 6.8 100.0
West 2.8 8.9 13.2 75.2 100.0
Full sample observed in 2001, conditional on moving once between 2001 and
2006, by region of origin.
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Figure 9: SIMILAR PLACES IN AMENITY SPACE - PRINCIPAL COMPONENT ANALYSIS
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Table 13: MOVING COST PARAMETER ESTIMATES BY AGE AND HEALTH TYPE

Origin-Destination Combinations of Census Regions
Age Health Cross state Distances in km Northeast Northeast Northeast Midwest Midwest South

>100 >500 >1,000 >1,500 >2,000 -Midwest -South -West -South -West -West
65-70 Excellent 3.12 4.97 0.18 -0.06 -0.35 0.81 1.63 0.09 0.28 0.42 0.04 0.13

(0.01) (0.01) (0.02) (0.02) (0.02) (0.02) (0.05) (0.02) (0.05) (0.02) (0.03) (0.03)
65-70 Good 3.17 5.04 0.17 -0.05 -0.50 0.84 1.74 0.03 0.38 0.30 0.05 0.26

(0.01) (0.01) (0.02) (0.03) (0.03) (0.03) (0.07) (0.03) (0.07) (0.03) (0.04) (0.04)
65-70 Fair 3.21 5.01 0.29 -0.20 -0.51 0.97 1.43 -0.04 0.08 0.31 -0.01 0.21

(0.02) (0.02) (0.04) (0.05) (0.04) (0.06) (0.10) (0.04) (0.12) (0.05) (0.09) (0.08)
65-70 Poor 3.17 4.96 0.31 -0.14 -0.51 0.97 1.55 -0.06 0.14 0.23 -0.12 0.16

(0.02) (0.02) (0.03) (0.04) (0.04) (0.05) (0.10) (0.03) (0.10) (0.04) (0.06) (0.06)
71-76 Excellent 3.21 5.06 0.15 -0.08 -0.43 0.78 1.48 0.00 0.27 0.39 0.02 0.20

(0.01) (0.01) (0.02) (0.03) (0.03) (0.03) (0.06) (0.03) (0.06) (0.02) (0.04) (0.04)
71-76 Good 3.24 5.06 0.15 -0.10 -0.55 0.89 1.53 -0.09 0.31 0.31 0.11 0.33

(0.01) (0.01) (0.02) (0.02) (0.03) (0.03) (0.06) (0.02) (0.06) (0.02) (0.04) (0.04)
71-76 Fair 3.27 5.01 0.22 -0.18 -0.58 0.93 1.45 -0.12 0.20 0.21 0.10 0.30

(0.02) (0.02) (0.03) (0.04) (0.04) (0.05) (0.09) (0.04) (0.09) (0.03) (0.07) (0.06)
71-76 Poor 3.24 4.94 0.29 -0.15 -0.63 0.99 1.32 -0.16 0.09 0.19 -0.01 0.27

(0.01) (0.01) (0.02) (0.03) (0.03) (0.03) (0.07) (0.02) (0.06) (0.03) (0.05) (0.05)
77-82 Excellent 3.08 4.91 0.29 0.02 -0.39 0.71 1.33 0.05 0.28 0.28 -0.02 0.13

(0.01) (0.01) (0.03) (0.04) (0.03) (0.04) (0.07) (0.03) (0.07) (0.03) (0.05) (0.05)
77-82 Good 3.09 4.87 0.26 -0.03 -0.46 0.85 1.24 0.02 0.10 0.34 0.05 0.24

(0.01) (0.01) (0.02) (0.03) (0.03) (0.04) (0.05) (0.02) (0.06) (0.03) (0.04) (0.04)
77-82 Fair 3.13 4.84 0.29 -0.04 -0.51 0.89 1.22 -0.12 -0.08 0.25 -0.06 0.19

(0.02) (0.01) (0.03) (0.04) (0.04) (0.05) (0.08) (0.04) (0.09) (0.04) (0.07) (0.06)
77-82 Poor 3.16 4.80 0.33 -0.09 -0.61 0.99 1.21 -0.17 0.03 0.26 -0.00 0.15

(0.01) (0.01) (0.02) (0.03) (0.03) (0.03) (0.05) (0.02) (0.07) (0.03) (0.05) (0.04)
83+ Excellent 2.99 4.78 0.33 0.10 -0.35 0.77 0.95 -0.03 -0.12 0.32 -0.13 0.08

(0.02) (0.01) (0.03) (0.04) (0.04) (0.04) (0.07) (0.04) (0.09) (0.04) (0.06) (0.06)
83+ Good 2.99 4.73 0.39 0.11 -0.51 0.80 1.05 -0.07 0.21 0.34 -0.03 0.29

(0.01) (0.01) (0.02) (0.03) (0.03) (0.04) (0.06) (0.03) (0.07) (0.03) (0.05) (0.05)
83+ Fair 3.05 4.76 0.39 0.02 -0.45 0.85 0.88 -0.14 -0.01 0.28 -0.10 0.19

(0.02) (0.02) (0.04) (0.04) (0.04) (0.05) (0.07) (0.04) (0.09) (0.04) (0.07) (0.07)
83+ Poor 3.09 4.74 0.48 -0.07 -0.55 1.00 1.03 -0.23 -0.18 0.28 -0.23 0.09

(0.01) (0.01) (0.02) (0.03) (0.03) (0.04) (0.05) (0.02) (0.06) (0.03) (0.04) (0.04)
Estimates from Equation 15 for the model period 2001 to 2006, by health and age type. Standard errors are bootstrapped with B = 200,
in parentheses.
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A.2. Estimated Normalization Correction

The following provides a consistency check for the estimated normalization constants m̂τ:

For each type, the lifetime utility of place 1 has been normalized to zero, i.e. m = −V1. This

implies that the normalization constant equals the total lifetime utility from living in place 1.

So if it can be assumed that being in a better state of health (say τ > τ′) improves the utility

of living in 1, Vτ
1 > Vτ′

1 , then it must be true that mτ < mτ′ . The estimated m̂’s are equal to

−m, so in turn it must be true that mτ > mτ′ . The estimated normalization constants m̂τ are

monotonically decreasing across health types, which can be seen in Table 14. Note that m̂τ

equals −Vτ.
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Table 14: MARGINAL UTILITY ESTIMATES - DECOMPOSITION OF FLOW UTILITY VALUES

Age 65-70 Age 71-76 Age 77-82 Age 83+
Summer (degrees Celsius) 0.0235 0.0184 -0.0120 -0.0234

(0.0062) (0.0058) (0.0064) (0.0063)
Summer (Health type 2) -0.0068 -0.0112 -0.0073 -0.0081

(0.0039) (0.0043) (0.0053) (0.0060)
Summer (Health type 3) -0.0212 -0.0199 -0.0217 -0.0206

(0.0061) (0.0060) (0.0065) (0.0069)
Summer (Health type 4) -0.0246 -0.0286 -0.0294 -0.0376

(0.0054) (0.0050) (0.0057) (0.0057)
Winter (degrees Celsius) 0.0465 0.0353 0.0296 0.0269

(0.0017) (0.0023) (0.0023) (0.0026)
Winter (Health type 2) -0.0006 0.0008 -0.0037 -0.0018

(0.0018) (0.0023) (0.0024) (0.0028)
Winter (Health type 3) 0.0029 -0.0013 -0.0006 -0.0005

(0.0029) (0.0031) (0.0027) (0.0036)
Winter (Health type 4) 0.0035 0.0016 0.0038 0.0039

(0.0025) (0.0024) (0.0024) (0.0026)
Precipitation (mm per m2) -0.0244 -0.0395 -0.1184 -0.1729

(0.0104) (0.0118) (0.0134) (0.0140)
Precipitation (Health type 2) -0.0002 -0.0171 -0.0105 0.0174

(0.0111) (0.0117) (0.0130) (0.0161)
Precipitation (Health type 3) -0.0191 -0.0217 -0.0108 -0.0035

(0.0157) (0.0158) (0.0161) (0.0179)
Precipitation (Health type 4) -0.0323 -0.0441 -0.0162 0.0251

(0.0136) (0.0127) (0.0142) (0.0148)
Ambulatory care-sensitive hospital stays 0.0312 0.0406 -0.0598 -0.1373
(per 1,000 Medicare enrollees) (0.0175) (0.0171) (0.0170) (0.0140)
PM2.5 (µg per m3) -0.0777 -0.0616 -0.0328 -0.0269

(0.0029) (0.0024) (0.0030) (0.0027)
Apparel stores (log # per location) 0.0473 -0.0197 0.1380 0.2595

(0.0391) (0.0354) (0.0362) (0.0318)
Golf (log # per location) 0.4276 0.3406 0.1307 -0.0230

(0.0311) (0.0287) (0.0308) (0.0255)
Movie (log # per location) 0.1534 0.1342 0.1333 0.0844

(0.0135) (0.0117) (0.0149) (0.0131)
Dining places (log # per location) 0.0765 0.2689 0.3831 0.5144

(0.0262) (0.0263) (0.0316) (0.0252)
Correction (Health type 1) -2.6585 -3.6806 -4.7417 -5.1867

(1.4220) (0.8989) (0.7307) (0.5943)
Correction (Health type 2) -2.0892 -2.8710 -3.9695 -4.3794

(1.4006) (0.8561) (0.6893) (0.5491)
Correction (Health type 3) -1.3937 -2.3130 -3.2241 -3.5293

(1.3949) (0.8843) (0.6782) (0.5209)
Correction (Health type 4) -1.0134 -1.6340 -2.4436 -2.5012

(1.4252) (0.8697) (0.6633) (0.4719)
Rentindex (USD 2000) -0.0035 -0.0032 -0.0043 -0.0048

(0.0003) (0.0002) (0.0002) (0.0002)
Intercept -1.4714 -1.4597 -0.3619 0.3837

(0.4362) (0.3541) (0.3727) (0.3879)
N 1224 1224 1224 1224
R2 0.5623 0.5483 0.5360 0.5077
Adjusted R2 0.5540 0.5396 0.5271 0.4983
Notes: Results from estimating Equation 24. Decomposition of flow utility values on amenities,
rent indices, and variables to correct normalization in the first stage of the estimation. Climate
variables are interacted with health type dummies for types 2-4, therefore the coefficients are rel-
ative to the coefficients of type 1. Rentindices are instrumented with amenity variables of similar
but distant locations. Standard errors are bootstrapped with B = 200, in parentheses.

69


	Introduction
	Related Literature
	Residential Sorting
	Health Effects of Residential Choice
	Connecting the Residential Sorting and Health Effects Literatures

	Model
	Data
	Health Capital
	Residential Locations: Hospital Referral Regions
	Data on Climate Amenities
	Housing Prices, and Other Location-Specific Amenities
	Summary Statistics

	Estimation
	Location-Specific Health Transition Probabilities
	Location-Specific Survival Probabilities
	Dynamic Discrete Choice Model of Residential Sorting
	Identification of Moving Cost and Utility Values
	Identification of Marginal Rates of Substitution


	Results
	Survival and Health Fixed Effects
	Moving Cost Parameter Estimates
	Willingness to Pay for Local Amenities
	Model Fit

	Climate Change
	Predicting Counterfactual Mortality and Health Transition Rates
	Welfare Implications
	Comparison to Prior Literature
	Caveats and Possible Directions for Future Research

	Conclusion
	Appendix
	Normalization of Lifetime Utility
	Estimated Normalization Correction


